Features

- Two-Channel AD/DA Converters and Their Each Decimation and Oversampling Digital Filter in a Single Chip
- Simplified External Parts with a Built-In Analog Circuit Around AD Converter
- Distortion
- ADC . 0.015\%
- DAC . 0.009\% (-3dB)
- S/N Ratio (Typical Values when $F_{S}=16 \mathrm{kHz}$)
- ADC . 80dB
- DAC .90dB
- Ripple in the Digital Filter Pass Band $\pm 0.05 \mathrm{~dB}$ <
- Attenuation in the Digital Filter Rejection Band. . . 45dB>

Applications

- Telephones, TV Conference Systems, Language Laboratory Equipment, TV Game Equipment and Electronic Musical Instrument
Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathbf{C}\right)$	PACKAGE	PKG. NO.
HI2570JCQ	-20 to 55	48 Ld MPQF	Q48.12x12-S
CXD2570Q	-20 to 55	48 Ld MPQF	Q48.12×12-S

Description

The HI2570, CXD2570 is a 1 -bit stereo AD/DA converter which uses a 2 nd-order $\Delta \sum$ system noise shaper. This LSI is especially suited for sampling frequency between 8 kHz and 32 kHz .

Function

- Data Can Be Input/Output at Rate of $1 \times F_{S}$ with a BuiltIn Digital Filter
- Multi-Channel Systems can be Connected Using Several HI2570, CXD2570Qs
- The 32-Slot Serial Data Interface Enables Independent Selection of Data Frontward Truncation/Rearward Truncation and MSB First/LSB First
- $512 \mathrm{~F}_{\mathrm{S}} / 1024 \mathrm{~F}_{\mathrm{S}}$ (when $\mathrm{F}_{\mathrm{S}}=8$ to 16 kHz) or $256 \mathrm{~F}_{\mathrm{S}} / 512 \mathrm{~F}_{\mathrm{S}} /$ $768 \mathrm{~F}_{\mathrm{S}} / 1024 \mathrm{~F}_{\mathrm{S}}$ (When $\mathrm{F}_{\mathrm{S}}=16$ to 32 kHz) Can be Used as the Master Clock
- The Sampling Frequency of Not Only 8kHz or 16kHz, but 32 kHz or 44.1 kHz Can Be Used for Audio Equipment
- Various Frequency Divided Clocks are Output for LSIs Connected

Pinout

intersil.

Pin Descriptions

PIN NO.	SYMBOL	I/O	DESCRIPTION
1	AV DD3 3	-	Analog power supply for channel-1 DA converter
2	AOUT1 (-)	O	Analog reversed phase output of channel-1 DA converter
3	AV		-
SS3			

Pin Descriptions (Continued)

PIN NO.	SYMBOL	I/O	DESCRIPTION
28	BCK	I/O	Serial bit transfer clock for serial input data SIN or serial output data SOUT (64FS). Outputs in master mode (when Pin 26 is High). Inputs in slave mode (when Pin 26 is Low). Retrieves serial input data at _- ; send serial output data at
29	SIN	1	Serial data input of 2-channel sampling. The data format is 2's complement, and consists of 32 -bit slot.
30	SOUT	0	Serial data output of 2-channel per sampling. The data format is 2's complement, and consists of 32-bit slot.
31	DVSS	-	Digital GND
32	MASL	I	Selects whether 16-bit serial data is applied in the first 16-bits or the last 16bit of 32-bit slot in serial I/O. High = Frontward truncation; Low = Rearward truncation
33	MLSL	1	Selects whether 16-bit serial data is input/output at LSB first or MSB first in serial I/O. High = MSB first; Low = LSB first
34	XSLO	1	Crystal oscillator selection. Three bits, XSLO to 2. Selects the clock frequency to be input from XTLI (Pin 7).
35	XSL1	1	Crystal oscillator selection. Three bits, XSLO to 2. Selects the clock frequency to be input from XTLI (Pin 7).
36	XSL2	1	Crystal oscillator selection. Three bits, XSLO to 2. Selects the clock frequency to be input from XTLI (Pin 7).
37	DASLO	1	IC measurement. Normally, fixed at High.
38	DASL1	1	IC measurement. Normally fixed at Low.
39	wo	I	Window masked when High; window open when Low (forced synchronization). Equipped with a pull-up resistor.
40	DV ${ }_{\text {DD }}$	-	Digital power supply
41	NC	-	
42	NC	-	
43	SUB	-	Connected to the substrate in the IC (having the same potential as power supply). Connect this pin to GND via capacitor on the external printed wiring board.
44	$\mathrm{AV}_{\mathrm{DD}}{ }^{1}$	-	Analog power supply for channel-1 AD converter
45	AIN1	1	Analog input of channel-1 AD converter
46	$\mathrm{AV}_{\text {SS } 1}$	-	Analog GND for channel-1 AD converter
47	$\mathrm{AV}_{\text {SS }} 3$	-	Analog GND for channel-1 DA converter
48	AOUT1 (+)	0	Analog forward phase output of channel-1 DA converter

Absolute Maximum Ratings $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
Supply Voltage (V_{DD}) . $\mathrm{V}^{\text {SS }}$ - 0.5 V to 7.0 V			
Input Voltage (V_{1}).	$. \mathrm{V}_{S S}-0.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$		
Output Voltage (V_{0})	$\mathrm{V}_{S S}-0.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$		
Operating Temperature (Topr)		. $-20^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$	
Storage Temperature (Tstg		$55^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$
Recommended Operatin	ions		
	MIN	TYP	MAX
Supply Voltage (Note 1) (VDD)	4.5 V	5.0 V	5.5 V
Ambient Temperature (T_{A}).	$-20^{\circ} \mathrm{C}$	-	$+75^{\circ} \mathrm{C}$
Sampling Frequency (Note 2) (Fs)	7 kHz	-	33 kHz

I/O Capacitance

	MIN	TYP	MAX
Input Pin ($\mathrm{C}_{\text {IN }}$)	-	-	9pF
Output Pin (Cout)	-	-	11pF
Bidirectional Pin ($\mathrm{C}_{\text {I/O }}$)	-	-	11 pF
Measurement condition	1 MH		

Recommended Operating Conditions

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. The analog power supplies for AD converters (Pins 17 and 44) must be turned on simultaneously with or before other poser supplies. turning on these power supplies after any other power supply may cause the device to fall into latch-up condition. this precaution, however, does not apply when turning off the power supplies.
2. Although the device can operate with F_{S} frequencies such as $F_{S}=44.1 \mathrm{kHz}$ or 48 kHz , its analog characteristics deteriorate to extent. When used at only these F_{S} frequencies, the CXD255Q is recommended that is pin-compatible with the CXD2570Q.

Electrical Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	PART NUMBER OR GRADE			UNITS	APPLICABLE PINS
			MIN	TYP	MAX		
DC Characteristics							
Input Voltage	$\mathrm{V}_{\mathrm{IHC}}$		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	-	V	*1
	$\mathrm{V}_{\text {ILC }}$		Ò	Ò	$0.3 V_{\text {DD }}$		
	$\mathrm{V}_{\text {IN }}$	Analog Input	V_{SS}	-	V_{DD}	V	*2
Output Voltage	$\mathrm{V}_{\mathrm{OH} 1}$	$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-0.5$	-	V_{DD}	V	*3
	$\mathrm{V}_{\text {OL1 }}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$	0	-	0.4		
	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-0.5$	-	V_{DD}	V	*4
	$\mathrm{V}_{\text {OL2 }}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$	0	-	0.4		
	$\mathrm{V}_{\text {OH3 }}$	$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}} / 2$	-	V_{DD}	V	*5
	$\mathrm{V}_{\text {OL3 }}$	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$	0	-	$\mathrm{V}_{\mathrm{DD}} / 2$		
	$\mathrm{V}_{\mathrm{OH} 4}$	$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-0.8$	-	V_{DD}	V	*6
	V ${ }_{\text {OL4 }}$	$\mathrm{lOL}=4 \mathrm{~mA}$	0	-	0.4		
Input Leak Current 1	${ }^{\text {LII }}$		-10	-	10	$\mu \mathrm{A}$	*7
Input Leak Current 2	$\mathrm{I}_{\mathrm{LI} 2}$		-40	-	40	$\mu \mathrm{A}$	*8
Input Leak Current 3	LLI3		-20	-50	-12-	$\mu \mathrm{A}$	*9
Input Leak Current 4	${ }^{\text {LII4 }}$		20	50	120	$\mu \mathrm{A}$	*10
Output Leak Current	lıZ		-40	-	40	$\mu \mathrm{A}$	*11
Feedback Resistance	R_{FB}	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$ or $\mathrm{V}_{\text {DD }}$	250K	1M	'2.5M	Ω	*12
Supply Current	I_{DD}	(Note 3)	-	43	60	mA	
AC Characteristics							
SIN Setup Time	tsus		10	-	-	ns	
SIN Hold Time	ths		15	-	-	ns	
LRCK Setup Time	tsul	Slave mode	10	-	-	ns	
LRCK Hold Time	thl	Slave mode	15	-	-	ns	
LRCK Delay Time	tdl	Master mode $C L=130 \mathrm{pF}$	-40	-	30	ns	

HI2570, CXD2570

Electrical Specifications (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS	PART NUMBER OR GRADE			UNITS	APPLICABLE PINS
			MIN	TYP	MAX		
SOUT Delay Time	tds	$\mathrm{CL}=60 \mathrm{pF}$	9	-	65	ns	
SOUT Data Recovery Time	tzd		7	-	42	ns	
SOUT Data Erase Time	tdz		6	-	40	ns	
XTLI Pulse Width for Low Period	twl	$\begin{aligned} & \text { FS = 16kHz, 256Fs } \\ & (X S L 0=X S L 1=X S L 2=\text { Low } \end{aligned}$	40	-	200	ns	

NOTES:
3. This includes current consumption at load resistance ($\mathrm{RL}=3.9 \Omega$). Fs $=16 \mathrm{kHz}$
*1 All input pins except AIN1 and AIN2, and when bidirectional pins (BCK and LRCK) are input mode.
*2 AIN1, AIN2
*3 XCLK, XMCK2, SOUT
*4 AOUT1 (+), AOUT1 (-), AOUT2 (+), AOUT2 (-), UCLK
*5 XTLO
*6 When bidirectional pins (BCK and LRCK) are output mode
*7 All input pins except AIN1 and AIN2
*8 When directional pins (BCK and LRCK) are input mode
*9 MS, WO, CLR
*10 TEST
*11 SOUT, AOUT1 (+), AOUT1 (-), AOUT2 (+), AOUT2 (-), UCLK
*12 Resistance between XTLO and XTLI

Analog Characteristics $A V_{D D^{1}}=A V_{D D^{2}}=A V_{D D^{3}}=A V_{D D^{4}}=X V_{D D}=D V_{D D}=5.0 V \pm 10 \%, A V_{S S^{1}}=A V_{S S^{2}}=A V_{S S^{3}}=A V_{S S^{4}}=$ $X V_{S S}=D V_{S S}=0 V, T_{A}=25^{\circ} \mathrm{C}$

ITEM	CONDITIONS	MIN.	TYP.	MAX.	UNIT

ADC + DAC Connection Overall Characteristics. Measured under the following conditions unless otherwise specified.
Input waveform $=1 \mathrm{kHz}$ sine wave, $1.4 \mathrm{Vrms}(=0 \mathrm{~dB}), \mathrm{R}_{\mathrm{IN}}=16 \mathrm{k} \Omega$
XTAI $=16.384 \mathrm{MHz}$ ($=1024 \mathrm{Fs}, \mathrm{Fs}=16 \mathrm{kHz}$)
CLR $=\mathrm{MS}=\mathrm{WO}=$ open ($=5 \mathrm{~V}$)
SOUT and SIN directly coupled.

S/N Ratio	8 kHz LPF	74	80	-	dB
THD + N	8 kHz LPF	-	0.015	0.03	$\%$
Dynamic Range	$1 \mathrm{kHz},-60 \mathrm{~dB}$ 8 kHz LPF	74	80	-	dB
Channel Separation	$1 \mathrm{kHz}, 0 \mathrm{~dB}$	-	97	-	dB
Gain Difference Between Channels		-	0.1	-	dB
Gain	$\mathrm{RL}=3.9 \mathrm{~kW}$	-3	0	+3	dB
Input Level	$\mathrm{R}_{\mathrm{IN}}=0 \Omega$	-	0.1	-	Vrms
	$\mathrm{R}_{\mathrm{IN}}=16 \Omega$	-	1.4	-	Vrms
DC Offset (ADC Output)		-	030 F	-	Hex
ADC Input Impedance		-	1.2		$\mathrm{k} \Omega$

DAC characteristics in a single unit. Measured under the following conditions unless otherwise specified.
Input data $=1 \mathrm{kHz}$ sine wave, full scale ($=0 \mathrm{~dB}$)
XTAI $=16.384 \mathrm{MHz}(=1024 \mathrm{Fs}, \mathrm{Fs}=16 \mathrm{kHz}$
CLR $=\mathrm{WO}=$ open $(=5 \mathrm{~V}), \mathrm{MS}=$ GND

S/N Ratio	8 kHz LPF	84	90	-	dB
THD + N	8 kHz LPF, -3dB	-	0.009	0.03	$\%$
Dynamic Range	$1 \mathrm{kHz},-60 \mathrm{~dB}$ 8 kHz LPF	82	88	-	dB

Analog Characteristics $A V_{D D^{1}}=A V_{D D^{2}}=A V_{D D^{3}}=A V_{D D^{4}}=X V_{D D}=D V_{D D}=5.0 V \pm 10 \%, A V_{S S} 1=A V_{S S}{ }^{2}=A V_{S S^{3}}=A V_{S S^{4}}=$ $X V_{S S}=D V_{S S}=0 V, T_{A}=25^{\circ} \mathrm{C} \quad$ (Continued)

ITEM	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Channel Separation	$1 \mathrm{kHz}, 0 \mathrm{~dB}$	-	100	-	dB
Gain Difference Between Channels		-	0.05	-	dB
Output Level	$\mathrm{R}_{\mathrm{L}}=3.9 \mathrm{~kW}$	1.80	1.93	2.10	Vrms

Description of Functions

1. Serial data interface

[Related pins] LRCK, BCK, SOUT, SIN, MASL, MLSL
The serial data format is common for both SIN (DA converter input) and SOUT (AD converter output), consisting of two channels per sampling serial data represented by 2's complement. Each channel is divided into 32-bit slots, of which 16 bits are handled as data.

MASL is used to select whether the 16 bits of valid data is placed in the first or the last half of the 32-bit slots.

Similarly, MLSL is used to select whether the serial data is arranged at MSB first of LSB first.

MASL	
High	Frontward truncation
Low	Rearward truncation

MLSL	
High	MSB first
Low	LSB first

2. Master mode/slave mode
[Related pins] MS, LRCK, BCK
When using the CXD2570Q in multiple units or in a pair with DA converter such as the CXD2558M, one of these CXD2570Qs should be in the master mode to serve as the source of clocks LRCK and BCK.

The other ICs including CXD2570Qs are used in the slave mode, with their clocks LRCK and BCK supplied by the master CXD2570Q.

MS	MODE	LRCK AND BCK I/O
High	Master mode	Output
Low	Slave mode	Input

3. Crystal oscillator frequency selection (FS $=16 \mathrm{kHz}$ to 48kHz)
[Related pins] XTLI, XTLO, XSLO, XSL1, XSL2, UCLK, XCLK

By setting a combination of XSLO and XSL1, with XSL2 fixed low, the frequency of the external crystal oscillator connected to XTLI and XTLO can be selected. In this case, XCLK outputs a clock whose frequency is always 256 times Fs, and UCLK outputs a clock that is half the crystal oscillator frequency.

When supplying the master clock from some other external source, not a crystal oscillator, use XTLI for this clock input and leave XTLO open.

XSL2	XSL1	XSLO	CRYSTAL OSCILLATOR FREQUENCY	XCLK	UCLK
L	L	L	256Fs	256Fs	128Fs
L	L	H	512Fs	256Fs	256Fs
L	H	L	768Fs	256Fs	384Fs
L	H	H	1024Fs	256Fs	512Fs

*The CXD2555Q, which has the same pin configuration with this IC is recommended when using only $\mathrm{Fs}=32 \mathrm{kHz}$ to 48 kHz .
4. Crystal oscillator frequency selection (FS $=8 \mathrm{kHz}$ to 16 kHz)
[Related pins] XTLI, XTLO, XSLO, XSL1, XSL2, UCLK, XCLK

With XSL2 fixed High, the device can be operated with lowFs frequencies. In this case, the frequency of the crystal oscillator can be selected by setting a combination of XSLO and XSL1 accordingly.

XSL2	XSL1	XSL0	CRYSTAL OSCILLATOR FREQUENCY*	XCLK	UCLK
H	L	L	$512 F s$	$512 F s$	256 Fs
H	L	H	-	-	-
H	H	L	1024 Fs	512 Fs	512 Fs
H	H	H	-	-	-

5. A/D converter input level

Any desired input level V_{IN} (m .0 .1 Vrms) can be selected by adjusting $R_{I N}$ to generate the full-scale output of the AD converter.
V_{IN} generation of full-scale output varies with the products, and calculate the $\mathrm{V}_{\text {IN }}$ maximum level (approximately -3dB below the full-scale) using the following equation to input the signal.
(1) $\mathrm{Fs}=16 \mathrm{kHz}$ to $48 \mathrm{kHz}(\mathrm{XSL} 2=$ Low $)$
$\mathrm{R}_{\mathrm{IN}}=1230 \cdot \mathrm{~V}_{\mathrm{IN}}[\mathrm{Vrms}]-1200(\Omega)$
(2) $\mathrm{Fs}=8$ to $16 \mathrm{kHz}(X S L 2=$ High $)$
$\mathrm{R}_{\mathrm{IN}}=26600 \cdot \mathrm{~V}_{\mathrm{IN}}[\mathrm{Vrms}]-1200(\Omega)$

6. D/A converter output level

To change the D/A converter output level, adjust R15, R17, R30 and R32 in Application Circuit on page.
Metric Plastic Quad Flatpack Packages (MQFP)

